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The mean-velocity field over monochromatic, 1.96 Hz, deep-water waves was 
measured by means of hot-wire anemometers for a range of wind speeds (relative 
to wave speed) of 0.4 to  3-0. The mean-velocity profile, over waves 0-64cm in 
amplitude, was the same as that over a rough plate; that is, the mean velocity 
varied as the logarithm of the height above the mean-water level, except very 
close to the water, where the effect of the viscous sublayer became important. 
The wave-induced perturbation-velocity field and its associated Reynolds 
stresses were also measured and compared with numerical solutions of various 
linear equations governing shearing flow over a wavy boundary. The comparison 
showed that the measured velocity field was not well predicted by these theories. 

1. Introduction 
In  order to  understand how water waves grow, it is necessary first to under- 

stand the structure of the airflow over them. Early workers measured the mean- 
velocity profile as a function of height and found it t o  vary linearly with the 
logarithm of the height above the waves to a first approximation. This profile was 
used by Miles (1957, 1959)) together with the inviscid Orr-Sommerfeld equation, 
to calculate the growth of water waves on the hypothesis that the wave-induced 
perturbations in the turbulent Reynolds stresses are negligible (inviscid quasi- 
laminar model). His results indicate that, for typical flows, the wave-induced 
Reynolds stresses have a step discontinuity in the region where the wind velocity 
equals the wave velocity, are constant below this region, and that the momentum 
is transferred to the wave predominately by normal stresses. Stewart (1961) 
estimated that this extraction of momentum from the mean flow should be large 
enough to significantly affect the mean-velocity profile, and the profile over 
water waves should differ from that over a roughened plate, especially in the 
lower regions; however, Miles (1965) disagreed and estimated that the effect 
should be small. 

Recent measurements of velocity profiles have not resolved this disagreement. 
Laboratory measurements generally gave logarithmic profiles (Hidy & Plate 
1966, Wu 1968), but not always (Shemdin & Hsu 1966, 1967; Shemdin 1967). 
The latter authors present some evidence that the profile over a crest of a wave 
differs from that over a trough. Field measurements, being much less accurate, 
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appear to be even more contradictory (Seeholzt 1968, Takeda 1963). Although 
most of the deviations from the logarithmic profiles were small, they could 
significantly effect the theory for the growth of water waves. Indeed, recent 
measurements of the growth of waves (Snyder & Cox 1966, Barnett & Wilkerson 
1967, Shemdin & Hsu 1966, Bole & Hsu 1969) suggest that the inviscid quasi- 
laminar theory significantly underestimates their growth. In  addition, recent 
measurements of fluctuations in the air over waves have also produced conflicting 
results. Measurements at British Columbia, in relatively shallow water, showed 
no wave-induced fluctuations in the air velocities, thus suggesting that the wave- 
induced flow calculated from linear theory may be wrong (Stewart 1967, Weiler 
& Burling 1967). However, measurement over waves in deeper water in the Atlan- 
tic suggest that waves do induce measurable fluctuations in the air (Seeholtz 
1965). 

In order to clarify the mechanism for the generation of waves, and to resolve 
part of the disagreement among previous measurements, this paper attempts to  
provide accurate measurements of the wave-induced flow over a simple, pro- 
gressive, water wave in a laboratory wind tunnel, together with accurate, mean- 
velocity profiles. In  comparing these measurements with theory, numerical 
solutions to the Om-Sommerfeld equation were needed, and were kindly com- 
puted by Davis. The computation of these solutions motivated Davis to consider 
further the linear theory, and, ultimately, to new theoretical ideas, which are 
presented in Davis (1970). To facilitate the comparison of theory with data, we 
use the same notation as Davis. Furthermore, all data, except where noted, were 
non-dimensionalized by u* and U J V ,  where uq is a friction velocity defined in $4, 
and Y is the kinematic viscosity of air. 

2. Equipment 
The wind-water tunnel 

The wind-water tunnel (figure 1) was an open return type, 57 cm wide by 59 cm 
high, 590cm long, containing 21cm of water in the bottom. The tunnel was 
equipped with a variable speed fan at the downwind end, a wave-maker at the 
upwind end, and beaches at  both ends. An electrostatic filter was placed at  the 
entrance to eliminate dust contamination of the hot-wire anemometers. The 
turbulence level, about 1 %, was considered sufficiently low for the intended 
experiment. The boundary layers were about 8 cm thick at the test section, and 
the flow was essentially constant throughout the central core. The range of wind 
speeds used was 56 to 227 cmjsec. 

The wave-maker consisted of a submerged flat plate, hinged at the bottom, 
and was driven at variable frequency and amplitude. Considerable difficulty was 
encountered in getting the waves to travel down the tunnel as straight-crested 
waves, because waves whose wavelength was less than twice the width of the 
tunnel tended to become short crested as they travelled down the tunnel; the 
shorter the wavelength the faster this occurred. However, for wave frequencies 
below 2 Hz, the waves were reasonably two-dimensional, their amplitude varying 
about 20 yo across the width of the tunnel; and therefore all data were collected 
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with 1-96 Hz waves. These waves have a wavelength of 40*8cm, a wave-number of 
0.155 cm-l, and a phase velocity of 79.6 cm/sec, assuming the wave is in deep 
water. This assumption introduces little error, since the bottom changes these 
values by only 0.3 %. The instruments were located 396 cm from the entrance 
and 274 cm from the wave-maker (6-7 wavelengths). 

0 60 120 
LIIII 

cm 
FIGURE 1. Schematic side view, wind-water tunnel. 

Instrumentation 

The water-surface elevation was measured by a resistance wave probe whose 
output varied linearly with depth of submergence. The air velocities were 
measured by a modified Shapiro and Edwards constant current hot-wire anemo- 
meter using two hot wires in an x configuration, the modification being that 
power was supplied externally by Harrison power supplies, and the amplification 
of the hot-wire signals was by Dymec amplifiers. 

The hot wires were of 6-3 micron diameter platinum wire 0-27 cm long. They 
were mounted in a special probe that could rotate exactly 180" about an axis, 
precisely horizontal, which was aligned parallel to the tunnel axis. The axis 
of rotation passed midway between the two wires, so the rotation has the effect 
Chat one hot wire occupies the same position after rotation that the other occupied 
before rotation. The wires were operated in either of two fixed positions, rotated 
or non-rotated. 

The d.c. voltage from the hot wires was largely removed by subtracting a 
known d.c. voltage from the hot-wire voltage; the remaining signal was amplified 
by a factor of 100. The two hot-wire voltages and the wave-recorder voltage were 
each sampled sequentially once every 48ms, converted to a 12-bit binary 
number, and recorded on magnetic tape. Because the Nyquist frequency of the 
digital time series obtained from each signal was 10*42Hz, the signals were 
filtered by 4-po1e7 multiple-feedback, low-pass filters to remove frequencies 
above 10 Hz before digitization. 

3. Experimental method 
General 

The data were collected over a period of several months; but, t o  as close a degree 
as possible, all data were recorded under essentially the same conditions. The 
same hot wires were used throughout, and with the same current. All data were 
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recorded at night so that the room temperature remained constanti within 
& 0.2 "C, although the temperature could vary _+ 2 "C from night to night. The 
data in each channel were sampled 4096 times, which represents a time of 196 sec 
or 386 wave periods. Two different sets of 4096 samples of data (representing 
772 wave periods) were used to obtain each datum reported in this paper, thus 
ensuring statistically significant results. 

Calibration 
The hot wires were always calibrated in situ immediately prior to collecting 
data. Initially, the calibration was performed using a correlation between the 
vortex shedding frequency of a circular cylinder and the mean wind proposed by 
Roshko (1955) in the form 

_ -  - 0*212--2*7, nd2 

where n = vortex shedding frequency, d = diameter of the cylinder, and 
v = kinematic viscosity of air. Ford = 0.635 cm, v = 0.158 cm2/sec, and 70 < Ti < 
250 cmlsec, the Reynolds number, R = Ud/u ,  is in the range 280 < R < 1000. For 
this range of R, the shed vortices have awell-definedfrequency, but are turbulent, 
so the effects of the tunnel turbulence on the shedding frequency should be 
minimized. This initial calibration confirmed an accurate correlation between 
fan rev/min and mean-wind speed; consequently this was used to  calibrate the 
anemometers. The wires were calibrated in both the rotated and the non-rotated 
position to eliminate any effect produced by the mean flow being a t  a slight angle 
to the tunnel axis. 

The relative error in the calibration of the anemometers, as estimated from the 
variance in the measurement of n and the repeatability of the relationship 
between fan rev/min and the mean wind, was about & 1.5 yo. The absolute error 
of the calibration is difficult to assess, and depends essentially on the accuracy of 
(3 .1) .  For a low-turbulence tunnel, Roshko's data indicates this equation is 
accurate to 5 2 % )  but the effect of tunnel turbulence is unknown and may 
increase these estimates of error. 

Ud 
(3.1) 

V V 

Analysis of data 

The signals from the anemometers were analyzed assuming a linear response to 
small velocity fluctuations. The accuracy of this method was assessed by analyz- 
ing a portion of the data using both the non-linear and the linear hot-wire 
response function. A comparison of the results showed that the linear analysis 
underestimated the mean velocity, but never by more than 1.5 yo. The values 
from the linear analysis of the fluctuating part of the velocity were within 7 yo in 
amplitude and 3" in phase of the values from the non-linear analysis. 

Accuracy 

The errors in the velocity measurements fall into two classes. The first includes the 
effects of the inaccuracy of the electronic measurements, the temperature 
dependence of the hot-wires, the inaccuracy of the calibrations, and the drift of 
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the hot-wire calibration coefficients due to  dust collecting on the wires; this 
class limits the accuracy of each velocity datum. The second includes errors due 
to  the velocity fluctuations in the free stream and in the boundary layer; this 
class limits the precision of the measurements of the mean and perturbation 
velocity fields. A detailed discussion of both classes of errors is given in Stewart 
(1969). We present here a brief summary of the relative magnitudes of the first 
class, and defer until later a discussion of the second. 

The electronics probably contributed an inaccuracy of & 0.1 yo to the measure- 
ments of the mean velocity, U ,  and & 1 yo to  the measurements of the fluctuating 
velocities, u'. The temperature changes of 5 0.2 "C contributed an inaccuracy of 
& 1 yo to U ,  while temperature fluctuations contributed an inaccuracy of & 1 % 
to  u'. The change in U due to temperature was very slow, and its principal effect 
was to change the velocity profiles slightly. The drift of the calibration coefficients 
of the hot wires was negligible. The total drift after more than 50 hours of opera- 
tion was less than the experimental inaccuracy of the measurement. This low 
drift was the result of the very high efficiency of the electrostatic filter a t  the 
low wind speeds used. Thus the values of the mean velocity are probably accurate 
to within & 3 yo on an absolute scale, and within 

In  addition, there was an error in resolving the velocity components. Pre- 
liminary measurements, with a fixed x probe, indicated that the horizontal 
component of the velocity fluctuations a t  the wave frequency, a, tended to be 
much larger than the vertical component, W .  Therefore a rotating probe was 
constructed so that if part of the measured W were due to  a, as a result of 
geometrical errors in resolving the velocity components, then rotating the probe 
about a horizontal axis would reduce this error. Measurements with the rotating 
probe, using the non-linear response function of the hot-wire, showed that over a 
wide range of velocities only about 1 yo of U appears as a mean vertical velocity. 
This implies the fluctuating velocities are also resolvable to this accuracy. 

1-5 yo on a relative scale. 

4. Mean boundary-layer velocity measurements 
The mean-velocity profile was measured for a number of free-stream velocities 

for air blowing over a smooth water surface in the absence of waves (although 
there were a few small ripples), and over smooth, 0.64 cm amplitude, sinusoidal 
waves. The former measurements were performed to obtain profiles that would 
be directly comparable to profiles measured over a smooth flat plate by other 
workers. Since the profile over a smooth water surface should be quantitatively 
similar to  that over a smooth flat plate, except for the effects of a small surface 
current, this should provide an estimate of the accuracy of the measurements. 

The measurements were made using the linear analysis. The mean voltages 
across the hot wires were converted t o  mean velocities; and the four mean velo- 
cities, obtained from the two wires operating in the rotated and non-rotated 
position at  each elevation, were averaged together to  obtain one point in the 
velocity profile. 

The dimensional mean velocity, Uf, was plotted as a function of the logarithm 
of the dimensional height, zf, for each free-stream velocity, U,. In  general, the 

47 P L M  42 
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velocity profile was linear on this plot, except a t  the lowest levels, and straight 
lines were drawn through the data for each profile. The slopes of these lines were 
used to define a friction velocity dU+ 

U* = ko- dlnx+’ (4.1) 

assuming von KBrmBn’s constant, k,, was 0.4. The data were put into non- 
dimensional form using u* and are plotted in figure 2 .  The symbols used in this 
figure, together with their associated free-stream and friction velocities, are given 
in table 1. The lines through the data in figure 2 were calculated from 

(4.2) U = 1 /k, In ( 1 + k,z) + A [ 1 - (1 + z/S)  exp ( - z/S)] + B(z/y)2 exp ( - z /y ) ,  

where A = C,-l/k,lnk,, 

B = k,y2/2 - Ay2/(2S2). 

The latter equation results from requiring d2U/dz2 = 0 a t  z = 0. The free para- 
meters for the line through the data for flow over a smooth water surface are 
C, = 7.2, 6 = 4.8, and y = 1.6. The three different profiles through the data for 
flow over waves used C, = 3.7 and the indicated values of S and y. No physical 
significance should be attached to  (4.21, it is used only to provide a convenient 
functional relationship between the U and z data what will be useful in the linear 
perturbation analysis. Note that when z > 60 this equation reduces to the ‘law 

(4.5) 
of the wall’ U = l/k,lnz+C,. 

Before proceeding to a discussion of the mean-velocity measurements, we 
should consider the precision of these measurements since the flow through the 
tunnel was not steady, and repeated velocity measurements showed some 
variation. This variation was reduced t o  about 1 yo of the nominal value of the 
meanvelocity by the averaging together of the two 196 second segments of velocity 
data. Thus the precision and relative accuracy of the data were about equal. 
Neverthclcss, there is one set of data points (no waves, U, = 56 cmlsec) that seem 
to  belie this estimate of accuracy. These data represent the lowest velocities 
measured in the tunnel, the velocity extending down to  24cm/sec, and the 
accuracy of the hot-wire anemometers is questionable at  these wind speeds. In  
addition, only the top four points in the profile were used to  determine u*, 
consequently u* may be in error. 

I n  comparing our data to previous work, we consider first the flow over a 
smooth water surface. Qualitatively, figure 2 agrees with a similar figure in 
Hinze (1959, page 478); that is, there exists a ‘law of the wall’ for z > 30 that 
blends into a viscous sublayer for z < 30. This effect of the viscous sublayer 
adequately explains why the data in the dimensional plots were not logarithmic 
in the lower regions. For a more detailed, quantitative verification of the data, we 
compare it with Coles’s (1954) compilation of data for flow over a smooth plate. 
Since this compilation is for ‘law of the wall’ data, this comparison must be with 
u* and C,, the two parameters which characterize this correlation between U and 
x .  Now, because u* was used to  reduce the data to non-dimensional form, figure 2 
essentially determines the roughness coefficient C,. Coles’s figure 5 indicates C, 
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[his 9(0)] is a function of the momentum Reynolds number, Re, based on the 
momentum thickness of the boundary layer. Consequently, Re was estimated 
from (4.5) and was about 500; and Cl should be about 6-2. This value is con- 
siderably smaller than our value of 7.2; however, if we account for the effects of a 
surface current, us, the agreement is better. To do this, let us = C,u*, then 
C, = 7.2 - C,. We can estimate C, from Keulegan’s (1951) or Baines & Knapp’s 

No waves Waves 
r A 

’ I I  
A 

\ 

u* symbols used u* symbols used 
(cmlsec) (cm/sec) on figure 2 (cmlscc) on figure 2 

227 
193 
155 
120 
102 

95 
86 
56 

10.10 
8.70 
7.25 
5 7 5  
4.85 

4.13 
2.92 

- 

0 
0 
A 
D .. 
V 
0 

- 

11.68 

8.33 
6.71 
5.76 
5.49 
5.09 
3.36 

- 

TABLE 1. Summary of mean flow parameters 
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FIGURE 2. Mean wind velocity 99. height. The data symbols are identified in table 1; 
-, calculated from (4.2). 
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(1965) data, and can reasonably take it to be 0.6; therefore C, = 6.6. Considering 
the scatter in C, and in Coles’s value of C,, our value of C, is not inconsistent with 
previous determinations of its value. 

It remains t o  determine whether the measured values of u*, for flow without 
waves, agree with Coles’s data. The best way t o  do this is to convert u* to a 
drag coefficient, Cf = 2ug/U%, and then plot C, us. R,. This plot can be compared 
with the values of Cf us. R, in Coles’s table 1. The comparison (figure 3) shows 
excellent agreement between our data and Coles’s data. 
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R8 

FIGURF: 3. Drag coefficient ws. momentum Reynolds number of boundary layer. 
0, Coles (1954); 0 ,  this study. 

The above discussion demonstrates that the mean-velocity profile, in the 
absence of waves, is quantitatively similar to  that over a smooth flat plate if we 
include the effects of a surface current. The comparison of the profile over waves 
to previous work is more difficult, because no measurements have been reported 
for the flow regime considered here, a boundary layer over a small, smooth, 
sinusoidal wave for wind speeds near the wave phase velocity. Shemdin (1967) 
reported that mean-velocity profiles above 0.4 HI, waves (wavelength of about 
1000 cm) were nearly logarithmic but showed systematic deviations from a 
least-squares logarithmic fit, contrary to what we find for 40 cm wavelength 
waves. Hidy & Plate (1966) observed a logarithmic profile over small wind 
generated waves for wind speeds large compared with the wave speed. Wu (1968) 
has extended the work of Hidy & Plate and presents very complete measure- 
ments of the mean-velocity profile above such waves for large wind speeds. He 
shows conclusively that, for these high wind speeds, the profile is logarithmic 
near the water surface and, consequently, the same as the profile over a rough flat 
plate. Since our profiles are of the same form as those described in the last two 
papers, although for a different range of parameters, we conclude that the velocity 
profile over water waves is quantitatively similar to the profile over a rough 
plate. 
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5. The wave-induced perturbation velocity field 
In the usual development of the linear theory for shearing flow over waves, the 

velocity field is decomposed by means of the y average as defined by Phillips 
(1966, page 90); however, in practice, it is more convenient to accomplish the 
decomposition through a Fourier analysis of the velocity, recorded as a function 
of time, by an anemometer at  a fixed x in the tunnel. To understand how this 
decomposition is accomplished, consider the spectral forms of the water-surface 
elevation and air velocity. (Here we use spectra to simplify the discussion. In 
actuality, the data was analyzed in terms of its Fourier amplitudes.) 

The generated wave was very closely sinusoidal and had no ripples on it; so, in 
a fixed reference frame, the water-surface elevation is 

z = acos(kz-Znflt), (5.1) 

where k is the wave-number, and fl is the wave frequency in Hz. The spectrum 
of the water-surface elevation, X,( f ), measured at any x, is a line spectrum 

where &is the Kronecker delta function. The spectrum of each part of the velocity 
field, as measured at  a fixed x, is as follows: U ( z )  is constant, and need not concern 
us here. The ith component of the wave-induced perturbation velocity in the air, 
%{, is, by definition, constant at  any particular phase of the wave; thus, it repeats 
itself at  the wave frequency, and is of the form 

fBi = @!;cos(2nflt+$hui), (5.3) 

where {&} = {& &} is the phase of @i with respect to the wave crest; and its 
spectrum is 

(5.4) 

In (5.3) we have ignored the higher harmonics of the velocity field, mainly 
because the linear theory predicts only the fluctuations at the wave frequency, 
and because the principal contribution to the fluctuations comes at  the wave 
frequency. The turbulent velocities, {u;}, have a continuous spectrum, X,;(f). 
Thus the spectrum of the air velocity, Xu,(f), is composed of a continuous spectrum 
with a superimposed line spectrum. 

To separate this line from the background due to u; the data should be spectrally 
analyzed at  the narrowest possible bandwidth. For, if one of the frequency bands 
of the analysis contains fl, the contribution to the velocity spectrum from this 
band will be composed of a contribution from '?Zi plus a contribution from ui. 

and, as the bandwidth of the analysis shrinks, Xu; becomes small, but remains 
constant. 

The analysis of noisy periodic signals has been considered by many workers, 
and the problem is well understood; an example of the analysis used in a problem 
similar to ours is contained in Munk & Cartwright ( 1  966). We present here only an 
outline of the analysis with some comments on certain aspects of the problem. 
Complete details are given in Stewart (1  969). For this study, we are interested in 
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the amplitude and phase of a single sinusoidal component (at the wave frequency); 
therefore, i t  is convenient first to calculate the coefficients of the Fourier series 
expansion of the raw data at the frequencies near the wave frequency, convert 
these coefficients to those for the Fourier series expansion of velocity and water- 
surface elevation (assuming a linear instrumental response function), and, 
finally, to compute the desired spectral and phase relations. 

The coefficients of the Fourier series expansion of a series of data samples, 
z k ( t A )  = z k ( t ) ,  t = 1, 2, .. ., m; for the kth instrument, is given by 

z m  
XJj) = - C zk(t) exp [ - i2nj(t - l)/m] (0  6 j d $m), (5.5) mt=l  

where i = J - 1, m = 4096 and A, the time interval between samples, is 0.048 sec. 
To reduce the amount of computation, X,(j) was only calculated for 20 values of j  
near the wave frequency. The X,(j) were manipulated in an obvious way to 
obtain the coefficients of the Fourier series expansions of the velocity and water- 
surface elevation. The spectra, 8&), cross-spectra, C&) + @&), and phases 
$kz(j), were computed using the relations 

(5.6) 1 Sdj) = 4xk(j)xm 
C k d j )  + i & k d j )  = +Xk(j)XP(jt, 

$ k l ( j )  = amtan [QkZ(j)/Q,d(j)I. 

Here X*(j) is the complex conjugate of X ( j ) .  A typical example of the velocity 
and wave spectra, at  f near fi, is given in figure 4. The peak in STL$ in the neighbour- 
hood of fi, was associated with Sei. The values of Swi and S, were used to calculate 
%: and a using (5.2) and (5.4). Note, these latter variables are non-dimensional; 
to obtain their dimensional values, multiply a by (v/u*) and by (u'u",~), 
where a' is av/u*, To be more specific, since a' = 0.64cm and v = 0-158cm2/sec, 
the dimensional value of %i is computed by multiplying $2; by (4-05 u$) cgs. 

Throughout these computations, considerable care was taken to avoid numeri- 
cal errors; and, where possible, the calculations were hand checked. The Fourier 
analysis was verified by analyzing computer-generated sinusoidal signals; and 
the entire data collecting system was tested by digitizing and analyzing a 
sinusoidal electrical signal applied simultaneously to all three data channels in 
place of the instrumental signals. The phases obtained by the digital analysis 
were within 1' of being identical, and the amplitudes were within 1 % of a 
voltmeter measurement of this sinusoidal input signal. Furthermore, the wave 
height, as deduced from its spectra, agreed with the height as measured by a 
simple wave staff. The linear analysis was verified by analyzing a portion of data 
using the exact, non-linear response function of the anemometers. This not 
only confirmed the validity of the linear approximation, but also provided an 
independent check of the algorithms used in the linear analysis. 

The peak in the various spectra was not always a line, but was usually spread 
over several elementary frequency bands, as can be seen in the spectrum of the 
water surface elevation in figure 4. The nature of this spreading depends on the 
exact frequency of fi, and the length of record being analyzed; the latter deter- 
mines the width of the elementary frequency band, while the form determines the 
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number of bands over which the spreading occurs. It can be shown that if the 
Fourier analysis is done at  frequencies f = jfo, where fo is the reciprocal record 
length, and j  any integer; and if f, = gfo, g being any real number, then 

(5.7) S(j) = *a2 sinc2 ( j  - g), 

where sinc 5 = (sin nx) / (m) .  Thus, if g is an integer, there is no spreading; and if 
g falls halfway between values of j, there is maximum spreading. Nevertheless, 
even in the worst case 90 % of the line spectrum is still contained in the two 
elementary frequency bands on either side off,. Because fl varied slowly (at the 
rate of about 2 x 10-SHz/h), it  was impossible to adjust fl so g was approximately 

10' 1-1 

1.91 1.95 2.00 1.91 1.95 2.00 

Frequency [Hz] 
1.91 1.95 2.00 

FIGURE 4. Typical spectra of horizontal and vertical air velocities and water-surface 
elevation at €requencies near the wavc frequency. 

integer valued, since data were collected over a period of several hours. However, 
during the time one series of data samples was collected, the frequency did not 
change enough t o  broaden the spectral peak. Instead, the only manifestation of 
this drift was a slow change of the position of the peak with time. 

Before comparing the data with theory, consider the accuracy of the data. 
The measurements of Sei are imprecise because they include contributions from 
Xu; and because fluctuations in Urn cause changes in U ( z )  and thus ultimately in 
Sai. If we define a signal-to-noise ratio 

and estimate the value of Xu; from its value at neighbouring frequency bands, 
then we find SNu, > 20 and often > 100. Under these conditions Stt; contributes 
little error to the measurements of Sai . To estimate the effect of slight fluctuations 
in Urn on the measurement of S%i, some measurements were repeated on the same 
night and on different nights. In general, the variance in the measured values of 
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was about 20 % of their mean; and the variance in & was about 10". Thus the 
imprecision of the measurements was considerably larger than the inaccuracy of 
each measurement. One entire profile was measured twice and the results of both 
measurements have been plotted together in figure 6 so one can judge the 
repeatability of the measurements. 

These estimates of accuracy do not apply to the measurements of W near the 
region where the mean velocity equals the wave phase velocity. Here the signal- 
to-noise ratio for V becomes small, because W becomes small; and the measure- 
ments are inaccurate. However, this loss of accuracy was seldom a problem since 
this region was narrow. 

6. The linear theory 
Outline of the theory 

The linear theory, used to predict the wave-induced perturbation velocities, 
{0ai}, has been considered by a number of authors. Miles (1957) was the first to 
formulate the problem so as to obtain solutions useful in practice. Later, the 
theory was extended by MiIes (1959) and Benjamin (1959). Very recently, the 
problem has been re-examined by Reynolds (private communication) a t  Stanford 
and by Davis (1970). These various formulations of the linear theory differ in two 
respects: (1)  Miles's (1957) formulation applies to  flows in the limit of infinite 
Reynolds number, while the other formulations apply t o  flows of any Reynolds 
number. (2) Most importantly, each formulation requires an assumption, or 
hypothesis, about the effects of turbulence in the perturbation equations. Miles 
assumed that the turbulent Reynold stresses are the same in the perturbed flow 
as they were in the original flow. This hypothesis results in the so called ' quasi- 
laminar model', but for our discussion we will call i t  hypothesis A .  Benjamin 
ignored the effect of turbulent fluctuations, and, consequently, his formulation 
applies rigorously only to laminar flows. Davis, motivated by Benjamin, refor- 
mulated the theory to  include the effects of turbulence, and considered two 
different models. The first used hypothesis A ,  and is the same as Miles's formula- 
tion except for the inclusion of viscous terms. The second model assumed that 
turbulent Reynolds stresses are a function of an appropriate measure of the 
elevation above the instantaneous water surface. We designate this hypothesis B. 
Reynolds assumed the turbulent Reynolds stresses could be related t o  the mean 
flow by a constitutive equation which is equivalent to introducing an eddy 
viscosity. 

Miles was able to obtain approximate solutions to his perturbation equation by 
means of asymptotic expansions, for a velocity profile of the form U = U, In (z/zo).  
The expansion required (i) that viscous effects be important only near the wall 
and near the critical layer, zc, where the mean-wind velocity equals the wave 
phase velocity; and (ii) that these two regions be well separated. For the lower 
wind speeds the viscous layer about the critical layer is wider than that near the 
wall and (ii) requires, in effect, that 
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where Ui is the derivative of U evaluated a t  the critical layer. For this condition 
to apply to  the experimental flow, z, 9 0.6cm, a condition apparently met for 
one set of data, when z, rr: 4 em. If the conditions for the asymptotic theory are 
met, the wave-induced Reynolds stress should be 

~ 

paw= 0 ( 2  > z,), 

i.e. the Reynolds stress should have a step discontinuity __ at the critical layer. 
This immediately suggests that one should measure paw as a function of height 
for those mean-velocity profiles which enable one to measure below the critical 
layer. This should yield a region near the surface where pew is constant and 
negative, thus it can be extrapolated to  just outside the viscous surface layer to 
obtain the momentum transfer to the wave due to the wa.ve-induced perturba- 
tion velocities. This was initially the purpose of the experiment. 

The complexity of the perturbation equations formulated by Davis and by 
Reynolds makes it impossible to  obtain even approximate analytic solutions; 
but they are amenable to solution by numerical methods for the range of para- 
meters investigated in the experiment. Both Davis and Reynolds integrated 
numerically their perturbation equations to obtain profiles of a,, &, and p @ w  
that  were directly comparable with the data; and we are thankful to them for this 
material. The shape of these profiles was unexpected in one respect, the wave- 
induced Reynolds stresses were not constant in the region z < z,  where the 
asymptotic theory predicted they would be constant. 

This unexpected behaviour of the wave-induced stresses, which is obviously 
due to the effects of viscosity, was first noted by Reynolds. Davis investigated the 
effects of viscositymore explicitly, and obtained estimates of the size of the viscous 
regions. In  particular, although (6.1) is valid for each velocity component, the 
viscous region for the Reynolds stresses is much wider. Furthermore, Davis 
showed that even when the asymptotic theory should apply, viscosity seriously 
influences the momentum transfer to the wave, and thus the momentum transfer 
cannot be estimated accurately from the velocity field measured inside the 
critical layer but outside the viscous sublayer. 

__ 

- 

Comparison between theory and measurements 

Before proceeding to a comparison of theory to measurement, we must discuss 
the applicability of the theory to the tunnel conditions. Firstly, ka = 0.10; so the 
linear theory, which assumes ka < 1,  should apply. Secondly, ICD = 5.7, where 
D = height of the top of the tunnel above the water surface; so the top on the 
tunnel should have little effect on the flow near the waves. More importantly, the 
theoretical airflow was assumed to have no x or y gradients, while the tunnel 
flow had variations of & 5 yo in the y ,  z plane (perpendicular to the tunnel axis), 
excluding boundary layers; and the flow in the boundary layers was developing 
in the downstream direction. The effect of the former variation is not precisely 
known, but its effect can be estimated by determining whether the measured flow 
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obeys continuity in two dimensions. This is done later in this section. The change 
in u* in the downstream direction, in the boundary layer over the waves, although 
digcult to measure accurately, was about 5-10 %/wavelength at  the point 
where the perturbation velocities were measured. This change in u* appears to be 
small, but its effect is unknown. Furthermore, because of the shortness of the 
tunnel, meaningful measurements of this effect could not be made. 

The numerical integrations available for comparison with the data were quite 
extensive. Reynolds integrated his perturbation equation for three of the profiles 

180 r 

10-1 - 90 - 
r- 

d --- - - _ _ _ _ _ _ _ _ _ _ _  0 

l', 

~~~==-----=---_---rIb 

-. ,_----_ 

, 
I 1 I 

100 101 102 103 100 10' 102 103 
z 2 

FIGURE 5. Wave-induced perturbation velocity 'us. height for U, = 277 cmlsec. - - -, 
integrations of equation associated u-ith hypothesis A ;  -, with hypothesis B ;  A, with 
u* = 1.05 u* in table 1, using profiles 8 = 10, y = 3-3; v, S = 15, y = 3-51; 0, 6 = 7, 

= 2.3. 0, with ti* = u* in table 1, using profile S = 10, y ,= 3.3. 0 ,  data. Lines through 
V data calculated from Q data assuming continuity. 

investigated by the experiment ; while Davis integrated his equations for all 
profiles, and, in addition, investigated the effect or errors in various experimental 
parameters. Because of the large number of integrations calculated by Davis, we 
confine our attention primarily to his results. 

The profiles used in his integrations were calculated from (4.2), and are 
identical to those in figure 2. These different profiles were used to investigate the 
consequences of,a lack of knowledge of U in the region where measurements 
could not be made. The data for the wave-induced velocity field, together with 
representative numerical integrations, are given in figures 5-1 1.  The integrations 
shown give the most distinctive or the most different velocity fields and not 
necessarily the best fit with the data. In general, the integrations not shown fell 
bekween those that were. The slopes drawn through the W '  and q5qo data were 
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calculated from the 6 data assuming continuity in two dimensions. This can be 

a 6  aw 
ax az 

done accurately since 
-+-- = 0 (6.3) 

and since, from (5.3), for any x, 6 = a' cos(kx-27~f~t-q5~); thus 6 can be 
differentiated explicitly to obtain the desired x derivatives. This provides a check 
on whether the data obey continuity in the x, z plane; if the data points do not 
follow the calculated derivatives, then the data may be in error, or the flow may 
have important three-dimensional components and cannot be considered to be 
two-dimensional. Fortunately, the data points do tend to follow the indicated 
slopes, although with some scatter. 

The figures indicate there is only rough agreement between the measured 
amplitudes, 6:, and the amplitudes of the numerical integrations of the equation 
resulting from hypothesis B, and that the integrations tend to be slightly larger 
than the W ' data at the higher wind speeds. Nevertheless, there exists one region 
in each figure where the data does not agree with the integrations, the W data 
does not become small in the region where the integrations go to zero. This is 
not altogether unexpected since this region is very narrow, and any unsteadiness 
in the mean flow would tend t o  smear out this feature, resulting in increased 
variabilityin 6'. And, indeed, this increased variability was observed; the W data 
tended t o  be much more variable than the W ' data. The comparison of the phase 
data with the integrations again shows only rough agreement; in some figures the 
agreement is very good, but in one it is poor. 

A comparison of the data with the integrations of the equation resulting from 
hypothesis A shows little agreement. The amplitudes tend to be too high at  the 
higher wind speeds, and the phases show poor agreement. 

For brevity, Reynolds's solutions have not been presented. His integrations 
of the equations resulting from the inclusion of an eddy viscosity in the linear 
theory are of very similar shape and have almost the same amplitudes as the 
integrations associated with hypothesis A .  The phases of his velocities show 
slightly better agreement with the data than do the phases for the velocities 
calculated assuming hypothesis B. 

In the preceding paragraphs we have compared the measured velocity fields to 
thosc predicted by three different linear theories bascd on three different arbi- 
trary assumptions concerning the role of turbulence in the linear theory. This 
comparison showed that none of the three theories can predict the velocity field 
well. The instability theories can give the correct qualitative nature of the 
velocity field, but not its quantitative value. 

Up to this point we have not considered the wave-induced Reynolds stresses 
because of the special difficulties involved in their measurement. The nature of 
these difficulties can best be explained by considering three features of the 
theoretical velocity fields. Firstly, 6 and W were almost exactly in quadrature; 
they rarely deviated more than 10" from being 90" out of phase. Secondly, 6%'- 
was oscillatory in x, with large gradients near the water surface. Thirdly, the 
calculated Reynolds stresses were more sensitive to variations in U and u, than 
were the components of the velocity field. Because the measured Reynolds 

- 
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stresses are qualitatively similar to the calculated stresses, these features of the 
stresses have the following implications: (1) The close approximation to quadra- 
ture between % and W implies that small errors in the  measurement of their 
phases will result in large errors in @W. Indeed, this was observed; repeated 
measurements of %W differed by up to ? 50 % of their mean. (2) The oscillatory 
nature of the stresses, with large gradients, implies that the finite size of the 
velocity probe will distort the measurements to some extent, especially near the 
water. (3) The sensitivity of the calculated stresses to small perturbations in 
U and u* makes comparison between theory and experiment difficult. 

Because of these difficulties, no direct comparisons have been made between the 
measured and calculated stresses. Any agreement between theory and measure- 
ment would be due more to chance than necessity. However, certain conclusions 
can be drawn from the data. The measured wave-induced Reynolds stresses were 
qualitatively similar to the calculated stresses, and confirmed that viscosity was 
important for the flow. Furthermore, because these stresses had no constant stress 
layer, they could not be used to calculate the momentum transfer to the wave. 

- 
__ 

7. Discussion 
I n  this section, we will make use of the data for the flow over laboratory waves 

to  comment on some previously hypothesized, qualitative aspects of the flow, 
and on their relationship to recent field measurements. 

I n  the past, there has been some controversy about the shape of the velocity 
profile above different phases of the wave. Benjamin, on the basis of data from 
boundary layers above curved surfaces, assumed that the boundary layer over a 
wave would, t o  a first approximation, be the same a t  every point along the wave 
if it were measured as a function of 7 = z - aekz cos kx. However, Shemdin (1967) 
indicated that the mean-velocity profile over the crest differed from that over a 
trough. To examine the question, we have plotted ( U  +- a@)u, us. (zf - <), where 
6 is the water surface elevation, using their values over a crest (5 = au*/v) 
and over a trough (< = -au*/v). This is approximately the same as plotting 
( U  + a%) u*vs. 7 since kz< 1. Furthermore, because ofthenature ofthelogarithmic 
profile, this approximation introduces still less error into the plot. The result is 
shown in figure 12. This figure shows that the mean-velocity profile does appear 
to be the same over the crest and trough if it is plotted relative to the water 
surface, although there is a systematic discrepancy which increases as the wind 
speed increases. This discrepancy does not contradict the linear theory, and it is 
exactly such a discrepancy that must exist if there is to be a transfer of momentum 
from the air t o  the wave due to a wave-induced Reynolds stress. 

Another source of confusion has been the expected size of the wave-induced 
Reynolds stress, p%W . Stewart (1961) proposed that, over a fully __ developed sea, 
a major proportion of the stress a t  the water surface is carried by p%W, and, as a 
consequence, the boundary layer near the water surface will be strongly organized, 
and thus considerably different from the turbulent boundary layer over a flat 
plate. However, Stewart (1967) reported that measurements by Smith showed the 
wave-induced velocity field to  be much smaller than anticipated, and, in fact, 

__ 
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could not be measured. The data presented in this paper suggests an explanation 
for these negative results. 

I n  reporting Smith’s data, Stewart estimated the expected size of the velocity 
field from Miles’ first approximation to  the flow, to obtain 

(7 .1)  ’1 8% = t[ka( U - c) - aU’]Z e--2kz 

fJW- = $[ka( U - c)I2 ecZkz. 

We have computed S,, Swfrom (7.1) using (4.2) with Cl = 3.7, S = 15, y = 5 ;  

FIGURE 12. Mean-wind velocity a s  a function of wave phase 2)s. instantaneous height 
above water surface; 0 ,  over a crest; 0, over a trough. 

a comparison of these computed spectra with the measured spectra shows that 
(7 .1)  provides a correct estimate of the spectra when U E c, but significantly 
overestimates the spectra, by as much as a factor of four, at both higher and 
lower wind speeds. The greater or lower the wind speed, the greater the disagree- 
ment. This, then, adequately explains the failure of Smith, as reported in Stewart, 
to see the wave-induced velocity field, for, if i t  were t of its value as estimated by 
(7 .  l), i t  would be barely above the background noise due to the turbulent fluctua- 
tions in the boundary layer, for the bandwidth of his analysis, and would go 
unobserved. 

There remains one final comment; the data and the numerical integrations 
clearly indicate the effects of viscosity are more important than has previously 
been estimated, and the asymptotic theory for the growth of waves should be 
applied with caution, especially in laboratory studies where the Reynolds 
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number of the flow tends to be comparatively low. This effect of viscosity may 
help explain the discrepancy between the calculated and the measured rate of 
growth of wind-generated waves in recent experiments. 

The author wishes to thank J. W. Miles and R. E. Davis for their advice and 
comments. This work was supported by the Office of Naval Research under 
Contract Nonr-2216(29N) and is based on a dissertation (Stewart 1969) sub- 
mitted to the University of California, San Diego. 
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